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Purpose: Nanopolymorphic crystalline Hydroxyapatite (HA)-coated implants were different

in surface property from conventional HA-coated implants subjected to previous clinical

studies. The purposes of the present study were to retrospectively evaluate 10-years clinical

outcome of the HA-coated implants (HA implants) with a comparison to the same system

implants with anodic oxidized titanium surface (Ti implants).

Methods: Cumulative survival rate (CSR) of HA or Ti implants placed in 183 patients

(55 � 12.4 years old) over two decades was calculated with life table analysis. Differences

in CSR at each interval year, sex, age, frequency of number of implant placement according

to implant location and diameter were compared between both types of implants.

Results: Total 455 HA implants and 255 Ti implants were included. CSR at upper molar site

was consistently higher in HA implants than Ti implants until 8 years after placement. The

values after 10 years was 89.9% or 77.7% in HA or Ti implants, respectively. There were no

significant differences in overall CSR at any interval year. HA implants were more distrib-

uted at upper molar site but less at lower molar site than Ti implants. Diameter of HA

implants tended to be wider than Ti implants.

Conclusions: Under limitation of this retrospective study, the nanopolymorphic crystalline

HA-coated implants were more survived at upper molar site than anodic oxidized implants

until 8 years after placement. This clinical outcome might attribute to differences in

topographical and physicochemical characteristics between both types of implants.

# 2014 Japan Prosthodontic Society. Published by Elsevier Ireland. All rights reserved.
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1. Introduction

Hydroxyapatite (HA)-coated implants had been introduced as

‘‘bio-active’’ implants overwhelming ‘‘bio-inert’’ titanium (Ti)
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implants in 1980s [1,2]. The surface has been recognized as

‘‘the first generation implant’’ [3] even as titanium plasma-

sprayed (TPS) surface. There have been controversies about

their definite role in acquirement and maintenance of the

bone–implant integration as coating material onto implants.
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Some clinical studies reported that HA-coated implants have a

concern in the long-term stability and prognosis [4–7]. The

report pointed out that HA-coated implants had the higher

sensitivity for peri-implantitis than those in Ti surface

implants [8]. In addition, there were little direct evidences

about critical advantage of osseointegration capability as

compared to micro-roughened titanium surfaces which is

representative currently available titanium surface ensuring

substantial clinical stability [5–7,9–11].

HA has a multiple of physicochemical properties. HA

structurally has both positively and negatively charged planes

(a and c planes, respectively) by calcium and phosphate ions in

the crystalline structure. The solubility of HA is known to be

markedly lower than that of the other calcium phosphate

materials such as tri-calcium phosphate. However, the

solubility of HA is changed by the crystalline and the

calcium/phosphorus (Ca/P) ratio. For example, stoichiometric

HA, which has a 1.67 Ca/P ratio, is not soluble in water and

shows the highly solid mechanical property [12]. If going far

from 1.67 in Ca/P ratio, the HA has greater water-solubility and

lower mechanical property due to a deficits of crystalline

structure [12]. In contrast, such non-stoichiometric HA with

water-solubility chemically interacts with osteogenic cells and

the local environment by releasing ions necessary for bone

formation. By this mean, the different HA-implants manu-

factured by the different process cannot be considered to exert

the same clinical performance.

In addition to inherent physicochemical property of HA,

surface topography also influence the osseointegration capa-

bility. This fact makes the interpretation of one HA surface

very difficult. Most of reports about long-term clinical out-

comes of HA implants had been intended for high-tempera-

ture-sintered HA coating method including plasma-spray

technology which requires fusing HA at very high tempera-

tures of 10,000–20,000 8C. It is known that high-temperature-

sintered HA implants generally exhibit relatively large-scale

surface topography in sub-milli scale but not in microscale or

nanoscale [13–19]. Such HA-coating is solid and non- or less

soluble in water but relatively thick (several dozen micron or

more) and fragile [20]. This suspected as a cause of exfoliation

within coating layer and delamination at coating-titanium

substrate interface after functional loading.

Recently, nanopolymorphic crystalline HA-coating was

established using a combination of flame spray and low-

temperature calcination. In this method, HA was sprayed at

2700 8C which was markedly lower than that in plasma spray.

It was reported that this coating method achieved both a layer

of HA with a nearly stoichiometric Ca/P ratio (1.66) and a

biomimetic needle-like crystalline architectures on micron-

roughened titanium surface [21]. The nano-structures might

enhance osteoblastic adhesion, proliferation and differentia-

tion via stimulation of focal adhesion kinase [22,23]. This

distinct characteristic is never seen in the other HA-coating

methods including plasma spray or biomimetic apatite

formation using simulated body fluid [24]. Enhancement of

osseointegration capability by this HA-coating was evidenced

in rat femur model [21]. However, clinical outcomes, in

particular, long-term survival of this HA-coating implants

never been reported. The purposes of the present study were

to retrospectively evaluate over 10-years clinical outcome of
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commercially available implants with the nanopolymorphic

crystalline HA-coating on sandblasted surface with a compar-

ison to the same system implants with anodic oxidization on

the same micron geometry.

2. Materials and methods

2.1. Implants

This study dealt with two types of clinically available implants

with anodic oxidized titanium surface (Ti implants, FINAFIX,

Kyocera Medical, Osaka) and HA-coated surface (HA implants,

FINATITE, Kyocera Medical). The representative macroscopic

images of both types of sample implants were shown in Fig. 1a

and b, respectively. Images under scanning electron micros-

copy (SEM; SU-6600, Hitachi, Tokyo, Japan) and the arithmetic

mean surface roughness (Ra) determined with a 3D measuring

laser microscope (LEXT OLS4000, Olympus, Tokyo, Japan) were

shown in Fig. 1b–h. Ra values were determined by five

arbitrary points of implant surface using a cut-off value of

8 mm and measurement length of 130 mm. Ti and HA implants

was launched at 1990 and 1995, respectively.

After the release of HA implants, each type of implants was

clinically selected based on clinical determination. Implant

selection was nearly depended on the clinical judgment based

on themanagement forthebonequality andocclusal loading.For

example, HA implants were favorably used in the cases that the

surgeon felt the difficulty of the implant initial fixation due to

poor bone quality and that patients wanted the shortened

healingperiods asmuchas possible. Incontrast,Ti implants were

favorably placed into well-mineralized and solid bone which had

concerns for exfoliation of HA-coating during insertion.

2.2. Subject

One hundred eighty three patients (an average age of 55 � 12.4

years at first visit) were subjected for this retrospective

observation study. They had visited Kato dental clinic Implant

Center of Nakameguro for 20 years (from 1993/7/1 to 2013/12/

31) and underwent implant placement from 1993/7/26 to 2003/

12/3 at the clinics. Patients with severe systemic disease and

markedly poor compliance for dental treatment such as severe

diabetes, osteoporosis, rheumatism, high pressure, psycho-

genic illness, extremely poor plaque control, heavy smoker

and other psychogenic and physical characters non-adapted

for implant therapy. All patients underwent informed consent

for dental implant therapy after consultation about advan-

tage, disadvantage and requirements of various prosthodontic

treatments. All patient records were treated as data for

retrospective observation study according to the guideline for

clinical study established by the Ministry of Health, Labour

and Welfare in Japan. Notifications about use of patient’s

medical and dental records for this epidemiology study under

personal information protection were displayed in the clinics.

Birthday, sex, first and last visit date, dates of implant

placement and lost, implant length and diameter, bone

quality records based on traditional classification by Lekholm

and Zarb [25], presence or absence of bone augmentation such

as maxillary sinus augmentation or guided bone regeneration
e of nanopolymorphic crystalline hydroxyapatite-coated and anodic
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Fig. 1 – Photographs of scanning electron microscopic images nanopolymorphic crystalline HA-coated (a, c, e and g) or

anodic oxidized (b, d and f) implants. Arithmetic mean estimation (Ra) values measured with laser microscopy are no

significant difference between both types of implants (h).
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and surface type and peripheral X-rays were extracted from all

patient medical records and analyzed after linkable anon-

ymization. The surgeon was certified as a dental implant

specialist by Japanese Society of Oral Implantology in 2013.

This study protocol was approved by the Ethical Committee of

Tokyo Dental College (receipt number: 569).

2.3. Statistical analysis

Difference in sex and frequency of number of implant

placement according to implant location and diameter were

evaluated between both types of implants with Chi-square test

with residual analysis. Difference in distribution of number of

implant placement according to years and the average age of

patients were evaluated between both types of implants with F-

test and Mann–Whitney U-test, respectively. Cumulative

survival rate (CSR) of both types of implants was calculated

with life table analysis of Cutler–Ederer method according to

group as a whole, implant location and diameter. Difference in

CSR at interval year between both types of implants evaluated

with z-test. All statistical analysis was performed using a

commercial statistical computer program (SPSS Standard

Version, SPSS Japan, Tokyo, Japan) and a commercial spread-

sheet software (Microsoft Excel 2010, Microsoft Japan, Tokyo,

Japan). Statistical significance was set at p < 0.05.

3. Results

3.1. Implant’s characteristics

Ti implants (Fig. 1b) showed sunny yellow color in contrast

with bluish white color of HA-implants (Fig. 1a). Those
Please cite this article in press as: Kato E, et al. Retrospective clinical outcom
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implants were similar in implant shape such as body contour,

thread width, depth and number, interval of pitches and self-

tapping design (Fig. 1a and b). Their surface morphologies of

titanium substrate at micron level were similar, which was

characterized by irregularities across a couple of dozen micron

millimeter scale (Fig. 1c and d). In fact, there was no significant

difference in Ra value under above mentioned measurement

condition between both types of implants (HA: 1.5 � 0.4 mm;

Ti: 1.2 � 0.2 mm) (Mann–Whitney U-test) (Fig. 1h). However,

surface morphology at submicron level was totally different

between those implants. Only moderate edges like burr after

sandblasting and some concavities on floor were observed in

Ti implants (Fig. 1f). In contrast, HA implant surface showed

distinct nanopolymorphic structure, where nano-needle like

structures closed up and formed clusters in spots (Fig. 1e

and g).

3.2. Patients and implant location and diameter
distributions

Total 255 Ti implants and 455 HA implants were placed (Fig. 2).

There were no statistical differences between both types of

implants in sex and age at implant placement (Fig. 2). Most

number of implants were placed molar sites (premolar to

molar) in both types of implants. There were significant

differences between both types of implants in frequency of

number of implant placement at upper and lower molar sites

(asterisks in Fig. 2), but no significant differences at incisor site

regardless of maxillomandibular alveolar ridge. A 4.2 mm

diameter implants were the most frequently placed in both

types of implants, whose ratios to total number were

approximately 60% (Fig. 2). The next most frequent diameter

was 3.7 mm diameter, which was 20.9% and 32.0% in ratio to
e of nanopolymorphic crystalline hydroxyapatite-coated and anodic
dx.doi.org/10.1016/j.jpor.2014.11.004

http://dx.doi.org/10.1016/j.jpor.2014.11.004


Fig. 2 – General information about total implant number, patient’s sex ratio, average age and incidents of bone quality 4 and

bone augmentation therapy such as sinus floor augmentation and guided bone regeneration at implant surgery, ratio of

implant location, diameter and length of nanopolymorphic crystalline HA-coated or anodic oxidized implants. $p < 0.05,

significant difference between both types implants (Chi-square test).
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total number. Ti implants did not have 5.5 mm diameter.

There were significant differences between both types of

implants in frequency of number of implant with 3.2, 3.7 and

5.5 mm diameter (asterisks in Fig. 2) and in frequency of bone

quality 4 at implantation sites, which based on Lekholm and

Zarb classification. However, there were no significant

differences in implant length and frequency of bone augmen-

tation procedure such as maxillary sinus augmentation and

guided bone regeneration.

Ti implants and HA implants were placed from 1993 to 2003

and from 1995 to 2004, respectively (Fig. 3). Majority of

placement was concentrated from 1998 to 2002 in Ti implants
Please cite this article in press as: Kato E, et al. Retrospective clinical outcom
oxidized titanium implants for 10 years. J Prosthodont Res (2014), http://
and from 2001 to 2003 in HA, respectively. Distribution of

number of implant placement according to years showed

unequal variance in both types of implants and significant

difference between the types of implants.

3.3. CSR according to group as a whole, molar site and
diameter

Life table analysis revealed that CSR in HA implants were

98.4%, 94.5% and 90.2% at a 0–1, 4–5 and 9–10 interval year,

respectively (Fig. 4a and b). The values in Ti implants were

96.3%, 91.9%, and 89.2% (Fig. 4a). Implant numbers included for
e of nanopolymorphic crystalline hydroxyapatite-coated and anodic
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Fig. 3 – Distribution of number of implant placement according to years. $p < 0.05, significant difference between both types

implants (F-test).

Fig. 4 – List showing the number of failure, withdraw and survival and cumulative survival ratio (CSR) (a) and life table based

on overall CSR (b) of nanopolymorphic crystalline HA-coated or anodic oxidized implants in each interval year until 10

years after implant placement.
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analysis at the initiation of final-year was 283 and 151 in HA

and Ti-implants, respectively. There were no significant

differences in CSR between both types of implants at any

interval year (Fig. 4b).

CSR of implants at upper and lower molar sites were

analyzed as frequent implant locations. CSR in HA implants at

upper molar site was 99.4%, 94.6% and 89.9% at 1, 5 and 10

years after implant placement, respectively (Fig. 5a). In

contrast, Ti implants at upper molar site showed 90.0%,

77.7% and 77.7% of CSR. CSR at upper molar site was
Please cite this article in press as: Kato E, et al. Retrospective clinical outcom
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consistently higher in HA-implants than in Ti-implants until

8 years after implant placement ( p < 0.05, z-test) (Fig. 5a). The

values in HA-implants annually reduced and did not signifi-

cantly different as compared to Ti-implants after 8 years

despite even over 90% at 9–10 interval year. At lower molar

site, CSR was 97.2%, 94.1% and 89.8% in HA-implants and

98.7%, 96.0% and 94.0% in Ti-implants at a 0–1, 4–5 and 9–10

interval year after implant placement, respectively (Fig. 4b).

There were no significant differences in CSR at any interval

year between both types of implants at lower molar site. As
e of nanopolymorphic crystalline hydroxyapatite-coated and anodic
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Fig. 5 – Life table based on CSR of nanopolymorphic crystalline HA-coated or anodic oxidized implants in each interval year

until 10 years after implant placement corresponding to upper (a) or lower (b) molar site as implant location and 3.7 mm (c)

or 4.2 mm (d) as implant diameter. $p < 0.05, significant difference between both types implants at corresponding interval

year (z-test).
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with lower molar site, there were no significant differences in

CSR at any interval year between both types of implants with

3.7 or 4.2 mm diameter (Fig. 4c and d) which were frequent

implant diameters.

4. Discussion

Many basic studies suggested that osseointegration capability

of implant surface is one of the important factor determining

short- and long-term stability of dental implants [26].

Osseointegration capability is histologically expressed the

contact ratio of implant surface with matured bone tissue and

the volume and quality of surrounding supportive bone tissue

[27]. In addition, the amount of collagen, non-collagenous

protein and proteoglycan affect adhesive and delamination

strengths at bone-implant interface [28,29]. All of those macro-

and micro-structures modulate osteogenic cellular behavior

on implant surface and determine osseointegration strength

[30,31]. In this study, overall CSR value did not show significant

difference between both types of implants at any interval year.

In contrast, HA-implants placed on upper molar site showed
Please cite this article in press as: Kato E, et al. Retrospective clinical outcom
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consistently higher in CSR at any interval year than Ti-

implants until 8 years after implant placement. Interestingly,

there were no significant differences in CSR of implants placed

on lower molar site at any interval year between both surface

properties. Alveolar bone on upper molar site is often softer

and more difficult for initial implant fixation than that on

lower molar site, but then again, known to be abundant in

cellular component required for osseointegration [32]. There-

fore, osseointegration capability of implant surface is more

important on upper molar site than on lower one. These

indicated that this type of HA-coating substantially enhanced

osseointegration strength under clinical situation as com-

pared to anodic oxidized Ti-surface, and more importantly,

the efficacy was not only transitory phenomenon until

acquirement of osseointegration, but also continued to

influence the clinical stability over 5 years.

Retrospective observation study inherently contained

many biases; that was applied for this study universally. As

distribution of implantation sites, HA-implants trended to be

placed at upper molar site, whereas, Ti-implants were at lower

molar site. These resulted from consideration for the implant

surface potential with bone quality at implantation site in
e of nanopolymorphic crystalline hydroxyapatite-coated and anodic
dx.doi.org/10.1016/j.jpor.2014.11.004

http://dx.doi.org/10.1016/j.jpor.2014.11.004


j o u r n a l o f p r o s t h o d o n t i c r e s e a r c h x x x ( 2 0 1 4 ) x x x – x x x 7

JPOR-259; No. of Pages 9
mind. In facts, HA implants were higher in frequency of bone

quality 4 in Lekholm and Zarb classification than Ti-implants.

HA implants might acquire faster and stronger osseointegra-

tion than that around Ti implants, but the implant surface

might lose the needle-like nano-structure during or after

osseointegration by chemical dissolution or bone remodeling

and the titanium substrate was exposed over many years.

Interestingly, the CSR value at molar site supported the clinical

consideration for implant surface property. However, there

were no significant differences in distribution of sex and in an

average age between both types of implants. Moreover, there

was no difference in distribution of implant length and

frequency of bone augmentation; this indicated that the

situation of bone volume at implantation site was not different

between the both types of implants. The clinical indication

criteria for dental implant therapy in the clinic did not include

general disease inducing disorder of bone metabolism. In

addition, most parts of implant diameter were 4.2 mm and

3.7 mm in the both types of implants in this study. There was

significant difference in CSR regarding neither diameter

between the both types of implants. These indicated that

bone metabolism of patients included in this study might to be

fair or disadvantageous for HA-implants in the comparison

between both types of implant surface.

The most frequently used prosthetic design in patient

group included in this retrospective study was the single

crown, which was followed by fixed partial and full-arch

prosthesis. Removable prosthetic appliance was used rarely.

Types of prosthetic designs were not subjected to data

analysis because this study focused on difference in long-

term clinical outcomes between the same implant systems

with different types of surface property and because the

number was judged to be not enough for statistical analysis.

Correlations between surface property, prosthodontic design

and long-term clinical outcome were of great interest for

future analysis after more accumulation of clinical data.

Theoretical explanation for acquirement of short-term

clinical stability of this HA implant can be drawn based on the

previous basic studies. The biological and physicochemical

performances of this type of HA-coated and anodic oxidized

implants for acquirement and stability of osseointegration

were well described in the previous animal studies [21,33].

Biomechanical strength on cylindrical implants with the same

HA surface was 1.8 times higher than on titanium implants

with conventional sandblasted surface alone in rat femur

model [21]. Over 90% of bone-implant contact ratio (BIC) with

little soft tissue intervention was observed on the HA implants

in contrast with approximately 40% BIC and soft tissue

intervention on sandblasted surface. In contrast, titanium

implants with the same anodic oxidization on sandblasted

surface increased neither BIC nor biomechanical strength as

compared to sandblasted surface alone in the same experi-

mental model despite slight enhancement in mineralization

in bone-implant interface at early healing stage [33]. This HA-

coating was carried out with flame spray and low-temperature

calcination method which provides a drastic alteration in

surface morphology on sandblasted titanium substrate as

shown in Fig. 1. Atomic force microscopic analysis revealed

that this nanopolymorphic crystalline HA-coating increased

by approximately two times in surface area as compared to
Please cite this article in press as: Kato E, et al. Retrospective clinical outcom
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sandblasted surface alone despite difficulty in evaluation

based on surface roughness parameter [21]. Expanded surface

area increased protein deposition to help osteoblastic cellular

attachment on surface [34] and nanotopography itself enables

to modulate cellular function via intracellular changes

induced by force and chemical signaling through focal

adhesion plaque [35]. Such nano-structure in combination

with micro-roughened titanium substrate has a potential to

enhance osteoblastic behavior on surface leading to upgrade

of osseointegration [23,36].

In addition to nanotopographic feature, the HA implants

might simultaneously change surface physicochemical prop-

erty for enhancement of osseointegration when compared to

sandblasted titanium surfaces. HA has both negative and

positive electric charges at P and Ca sites in column and

therefore can trap electrically polarized molecule including

protein [37]. Proportion of Ca ions to P ions in constitutional

formula of HAs for this implant was 1.66 [21], which was close

to a stoichiometric HA. It is generally known that a

stoichiometric HA hardly undergoes chemical dissolution by

blood and tissue fluids [38] during osseointegration due to its

chemical stability. Chemical solubility of this type HA implant

was denied in previous animal study using rat femur [21]. It

can be speculated from these information that this type of HA

implant did not scatter Ca ions to local environment, which

promotes osteoblastic cellular function at moderate concen-

tration but induces apoptosis at over-concentration [39].

Determination of physicochemical property of this type of

HA-coated surface will be of great interest for future basic

research.

The CSR in HA implants was higher than the Ti-implants at

upper molar site consistently for 8 years after implant

placement but showed gradual reduction. In addition, higher

CSR in HA implants was observed only on upper molar site but

not on lower molar site. It was difficult to explain this site-

specificity of long-term clinical performance of the HA

implants. One assumption might be drawn based on the basic

knowledge about surface property of this HA implant. Previous

animal study using rat femur demonstrated that binding

strength was higher at bone-implant interface than at

interface between HA-coating and titanium substrate in both

cortical and bone marrow regions [21]. This implied that

accumulate fatigue by functional loading was likely concen-

trated on at interface between HA-coating and titanium

substrate rather than bone-implant interface. Release of

micro- and nano-particles of HA into local environment

induced inflammation [40]. Lower molar site is obviously

harder in bone tissue and susceptible to external force other

than occlusal loading such as tongue or masticatory muscles,

than upper molar site.

As background at the beginning of the 1990s, implant’s

micro- and macro-design had been changing from the first

generation implant characterized by one-piece or external

connection implants with machined, TPS or plasma-sprayed

HA surface to the second generation implants such as internal

connection implants with roughened surface at micron to

submicron level. Hence, the selection of different types of

implant was groped for each case. There was significant

difference in distribution of number of implant placement

according to year between the types of implants. Ti-implants
e of nanopolymorphic crystalline hydroxyapatite-coated and anodic
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surveyed in this study were launched in 1992 and HA-implants

were in 1996 by the same company. This difference may result

from the difference in the timing of the sellout and clinical

judgments based upon the basic knowledge about implant

surface property. On another front, practitioner’s develop-

ment in clinical skill and knowledge for implant therapy was

not neglected for interpretation of the outcome because this

retrospective study was carried out at single-center by single

practitioner who had eventually become an implant specialist

certified by Japanese Society of Oral Implantology. It was

undeniable that multivariate analysis should be ideally

required to prove causal association between implant proper-

ty and long-term clinical outcome in retrospective study.

However, the clinical outcome obtained in this study should be

of interest in the light of direct comparison for 10 years

between the different types of implant surface originated from

the same system and provide important information for many

practitioners in implant therapy to select type of implant

surface for long-term prognosis of dental implant therapy.

5. Conclusions

Under limitation of this retrospective study, the nanopoly-

morphic crystalline HA-coated implants were more survived

at upper molar site than anodic oxidized implants until 8 years

after placement.
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